Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol.

نویسندگان

  • Marina Santic
  • Rexford Asare
  • Ivana Skrobonja
  • Snake Jones
  • Yousef Abu Kwaik
چکیده

The Francisella tularensis-containing phagosome (FCP) matures to a late-endosome-like phagosome prior to bacterial escape into the cytosols of macrophages, where bacterial proliferation occurs. Our data show that within the first 15 min after infection of primary human monocyte-derived macrophages (hMDMs), approximately 90% of the FCPs acquire the proton vacuolar ATPase (vATPase) pump and the lysomotropic dye LysoTracker, which concentrates in acidic compartments, similar to phagosomes harboring the Listeria monocytogenes control. The acquired proton vATPase pump and lysomotropic dye are gradually lost by 30 to 60 min postinfection, which coincides with bacterial escape into the cytosols of hMDMs. Colocalization of phagosomes harboring the iglD mutant with the vATPase pump and the LysoTracker dye was also transient, and the loss of colocalization was faster than that observed for the wild-type strain, which is consistent with the faster escape of the iglD mutant into the macrophage cytosol. In contrast, colocalization of both makers with phagosomes harboring the iglC mutant was persistent, which is consistent with fusion to the lysosomes and failure of the iglC mutant to escape into the macrophage cytosol. We have utilized a fluorescence microscopy-based phagosome integrity assay for differential labeling of vacuolar versus cytosolic bacteria, using antibacterial antibodies loaded into the cytosols of live hMDMs. We show that specific inhibition of the proton vATPase pump by bafilomycin A1 (BFA) blocks rapid bacterial escape into the cytosols of hMDMs, but 30% to 50% of the bacteria escape into the cytosol by 6 to 12 h after BFA treatment. The effect of BFA on the blocking of bacterial escape into the cytosol is completely reversible, as the bacteria escape after removal of BFA. We also show that the limited fusion of the FCP to lysosomes is not due to failure to recruit the late-endosomal fusion regulator Rab7. Therefore, within few minutes of its biogenesis, the FCP transiently acquires the proton vATPase pump to acidify the phagosome, and this transient acidification is essential for subsequent bacterial escape into the macrophage cytosol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Host Factors Required for Modulation of Phagosome Biogenesis and Proliferation of Francisella tularensis within the Cytosol

Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into th...

متن کامل

Exploitation of Host Cell Biology and Evasion of Immunity by Francisella Tularensis

Francisella tularensis is an intracellular bacterium that infects humans and many small mammals. During infection, F. tularensis replicates predominantly in macrophages but also proliferate in other cell types. Entry into host cells is mediate by various receptors. Complement-opsonized F. tularensis enters into macrophages by looping phagocytosis. Uptake is mediated in part by Syk, which may ac...

متن کامل

Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification.

Mycobacterium tuberculosis (Mtb) pathogenicity depends on its ability to inhibit phagosome acidification and maturation processes after engulfment by macrophages. Here, we show that the secreted Mtb protein tyrosine phosphatase (PtpA) binds to subunit H of the macrophage vacuolar-H(+)-ATPase (V-ATPase) machinery, a multisubunit protein complex in the phagosome membrane that drives luminal acidi...

متن کامل

Combined deletion of four Francisella novicida acid phosphatases attenuates virulence and macrophage vacuolar escape.

Francisella tularensis is a facultative intracellular pathogen and the etiologic agent of tularemia. It is capable of escape from macrophage phagosomes and replicates in the host cell cytosol. Bacterial acid phosphatases are thought to play a major role in the virulence and intracellular survival of a number of intracellular pathogens. The goal of this study was to delete the four primary acid ...

متن کامل

Phagocytic receptors dictate phagosomal escape and intracellular proliferation of Francisella tularensis.

Francisella tularensis, the causative agent of tularemia, survives and proliferates within macrophages of the infected host as part of its pathogenic strategy, through an intracellular life cycle that includes phagosomal escape and extensive proliferation within the macrophage cytosol. Various in vitro models of Francisella-macrophage interactions have been developed, using either opsonic or no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 76 6  شماره 

صفحات  -

تاریخ انتشار 2008